Copied to
clipboard

G = D12.39C23order 192 = 26·3

20th non-split extension by D12 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6.18C25, C12.53C24, D6.10C24, D12.39C23, 2- 1+47S3, Dic3.13C24, Dic6.40C23, C4○D416D6, (C2×Q8)⋊28D6, D4○D1212C2, (C2×C6).9C24, (S3×D4)⋊15C22, C4.50(S3×C23), C2.19(S3×C24), (C6×Q8)⋊25C22, (S3×Q8)⋊18C22, C3⋊D4.5C23, C4○D1215C22, (C2×D12)⋊41C22, (C4×S3).22C23, C33(C2.C25), Q8.15D68C2, (C3×D4).33C23, D4.33(C22×S3), C22.6(S3×C23), Q8.44(C22×S3), (C3×Q8).34C23, D42S319C22, (C2×C12).124C23, Q83S317C22, (C3×2- 1+4)⋊5C2, (C22×S3).144C23, (C2×Dic3).300C23, (S3×C4○D4)⋊10C2, (S3×C2×C4)⋊38C22, (C2×Q83S3)⋊22C2, (C3×C4○D4)⋊13C22, (C2×C4).108(C22×S3), SmallGroup(192,1527)

Series: Derived Chief Lower central Upper central

C1C6 — D12.39C23
C1C3C6D6C22×S3S3×C2×C4S3×C4○D4 — D12.39C23
C3C6 — D12.39C23
C1C22- 1+4

Generators and relations for D12.39C23
 G = < a,b,c,d,e | a12=b2=c2=d2=e2=1, bab=a-1, ac=ca, ad=da, eae=a5, cbc=a6b, bd=db, ebe=a10b, dcd=ece=a6c, de=ed >

Subgroups: 1704 in 810 conjugacy classes, 443 normal (8 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, Dic3, Dic3, C12, D6, D6, C2×C6, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×Q8, C22×S3, C2×C4○D4, 2+ 1+4, 2- 1+4, 2- 1+4, S3×C2×C4, C2×D12, C4○D12, S3×D4, D42S3, S3×Q8, Q83S3, C6×Q8, C3×C4○D4, C2.C25, C2×Q83S3, Q8.15D6, S3×C4○D4, D4○D12, C3×2- 1+4, D12.39C23
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, C25, S3×C23, C2.C25, S3×C24, D12.39C23

Smallest permutation representation of D12.39C23
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 9)(2 8)(3 7)(4 6)(10 12)(13 23)(14 22)(15 21)(16 20)(17 19)(25 35)(26 34)(27 33)(28 32)(29 31)(37 45)(38 44)(39 43)(40 42)(46 48)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 37)(11 38)(12 39)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 34)(20 35)(21 36)(22 25)(23 26)(24 27)
(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 17)(2 22)(3 15)(4 20)(5 13)(6 18)(7 23)(8 16)(9 21)(10 14)(11 19)(12 24)(25 47)(26 40)(27 45)(28 38)(29 43)(30 48)(31 41)(32 46)(33 39)(34 44)(35 37)(36 42)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,6)(10,12)(13,23)(14,22)(15,21)(16,20)(17,19)(25,35)(26,34)(27,33)(28,32)(29,31)(37,45)(38,44)(39,43)(40,42)(46,48), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,25)(23,26)(24,27), (25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,17)(2,22)(3,15)(4,20)(5,13)(6,18)(7,23)(8,16)(9,21)(10,14)(11,19)(12,24)(25,47)(26,40)(27,45)(28,38)(29,43)(30,48)(31,41)(32,46)(33,39)(34,44)(35,37)(36,42)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,6)(10,12)(13,23)(14,22)(15,21)(16,20)(17,19)(25,35)(26,34)(27,33)(28,32)(29,31)(37,45)(38,44)(39,43)(40,42)(46,48), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,37)(11,38)(12,39)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,25)(23,26)(24,27), (25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,17)(2,22)(3,15)(4,20)(5,13)(6,18)(7,23)(8,16)(9,21)(10,14)(11,19)(12,24)(25,47)(26,40)(27,45)(28,38)(29,43)(30,48)(31,41)(32,46)(33,39)(34,44)(35,37)(36,42) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,9),(2,8),(3,7),(4,6),(10,12),(13,23),(14,22),(15,21),(16,20),(17,19),(25,35),(26,34),(27,33),(28,32),(29,31),(37,45),(38,44),(39,43),(40,42),(46,48)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,37),(11,38),(12,39),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,34),(20,35),(21,36),(22,25),(23,26),(24,27)], [(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,17),(2,22),(3,15),(4,20),(5,13),(6,18),(7,23),(8,16),(9,21),(10,14),(11,19),(12,24),(25,47),(26,40),(27,45),(28,38),(29,43),(30,48),(31,41),(32,46),(33,39),(34,44),(35,37),(36,42)]])

51 conjugacy classes

class 1 2A2B···2F2G···2P 3 4A···4J4K4L4M···4Q6A6B···6F12A···12J
order122···22···234···4444···466···612···12
size112···26···622···2336···624···44···4

51 irreducible representations

dim11111122248
type++++++++++
imageC1C2C2C2C2C2S3D6D6C2.C25D12.39C23
kernelD12.39C23C2×Q83S3Q8.15D6S3×C4○D4D4○D12C3×2- 1+42- 1+4C2×Q8C4○D4C3C1
# reps15510101151021

Matrix representation of D12.39C23 in GL6(𝔽13)

12120000
100000
001500
00101200
000015
00001012
,
12120000
010000
001500
0001200
0000128
000001
,
100000
010000
000010
000001
001000
000100
,
1200000
0120000
001000
000100
0000120
0000012
,
100000
12120000
008100
002500
0000512
0000118

G:=sub<GL(6,GF(13))| [12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,10,0,0,0,0,5,12,0,0,0,0,0,0,1,10,0,0,0,0,5,12],[12,0,0,0,0,0,12,1,0,0,0,0,0,0,1,0,0,0,0,0,5,12,0,0,0,0,0,0,12,0,0,0,0,0,8,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,12,0,0,0,0,0,12,0,0,0,0,0,0,8,2,0,0,0,0,1,5,0,0,0,0,0,0,5,11,0,0,0,0,12,8] >;

D12.39C23 in GAP, Magma, Sage, TeX

D_{12}._{39}C_2^3
% in TeX

G:=Group("D12.39C2^3");
// GroupNames label

G:=SmallGroup(192,1527);
// by ID

G=gap.SmallGroup(192,1527);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,184,570,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=b^2=c^2=d^2=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e=a^5,c*b*c=a^6*b,b*d=d*b,e*b*e=a^10*b,d*c*d=e*c*e=a^6*c,d*e=e*d>;
// generators/relations

׿
×
𝔽